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ABSTRACT

This report describes an effective and mathematically rigorous finite process for
determining whether or not a given regular switching function is linearly separable,
and if it is, for deriving a minimal set of integral weights and threshold to realize
the function, The procedure uses the integrai linear programming recently developed
by R. E. Gomery; the algorithm is described in detail, and a corresponding computer
program for implementing the technique can be obviously given without difficulty.

As an illustrative example, a regular switching function of nine variables is worked

in detail. (The same function was studied earlier by D. G. Willis in disproving a
conjecture.)
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Section 1
INTRODUCTION

The synthesis and minimization problem for linearly separable switching functions
is a fundamental problem in threshold logic. The problem is to determine whether
or not a given switching function is linearly separable and, if it is, to find the most
economic system of weights and threshold. In our previous reports (Refs. 1-7),

various methods have been applied to solve this problem,

For most of the threshold devices realizing linearly separable switching functions,
the weights and the threshold are required to be integers. However, the optimal
systems of weights and threshold obtained by the methods developed in the previous
reports may fail to be integral; in fact, D. G. Willis (Ref. 8) discovered a linearly
separable switching function of 9 variables of which

2, 2, 3,5,5, 6.5, 6.5, 6.5, 9; 12)

is the only minimal system of weights and threshold. This disproves the conjecture
of Elgot and Muroga (Ref. 9), and Muroga, Toda and Takasu (Ref. 10), about the

existence of minimal weights which are all integers.

Because of this, it is desirable to find integral systems of weights and threshold that
are the most economic among a given linearly separable function F, This problem
will be referred to as the integral minimization problem. R. O, Winder (Ref. 11)

proposed an approach and also mentioned several drawbacks. The problem remained
unsolved as Winder remarked in Ref. 11,

The objective of the present report is to develop an application of the integral linear
programming techniques introduced by R. E. Gomery (Ref. 12 and 13) to the integral

minimization problem for linearly separable switching functions.

1-1
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In the sections 2--4, we give an elementary exposition of Gomery's theory together .
with a modified finiteness proof so that it holds for our integral minimization problem.

In section 5, we give an illustrative example which is used in the later part of the

report. In the sections 6—-9, we formulate the synthesis and minimization problem

and then apply the method developed in sections 2—4 to solve the integral minimization

problem. The Willis example previously mentioned is used as an illustration, and a

minimal system of integral weights and threshold is computed by this process. The

result is

(2’ 2,3,5,6,17, 17,9 12)

1-2 {
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Section 2
STANDARD LINEAR PROGRAMS

A standard linear program is to find nonnegative real numbers that minimize (or
maximize) a given linear function subject to a given system of linear inequalities.
Since a maximum problem is reduced to a minimum problem simply by multiplying

the given linear function with -1, we way study the standard minimum program only.

For this purpose, let us consider a given linear function

q
0,0 " z %.1% M
=1
of q variables tl’ ceny tq’ where ao,o’ ao’ TURERE ao,q are given real numbers. On
the other hand, let
q
>
B ot Zai,jtj=0 @
j=1
wherei = 1, 2,..., p, be a given system of p inequalities in the same variables tl’
cees tq with given real coefficients a, j and constant terms a o Then, the standard
linear minimum program is the problem of finding nonnegative real numbers tl’ N
tq that minimize the given linear function (1) subject to the system (2) of p linear
inequalities.
Now, let y denote the given linear function (1) and let x,, (i=1, 2, ..., p), denote

i’
the linear function on the left side of the inequality (2). Consider y, LSRR xp
also as variables. Then, ihe standard linear minimum program described above can

be restated as follows.

2-1
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Find the minimum value of the variable y subject to the following p + 1 linear

equations
q
y=a ¢ z 2.4 @)
i=1
q
T a8y “
j=1
where 1 =1, 2, ..., p, and the condition that
xiZO, i=12...,p (5
t. 20, =12...,9 (6)

j

Let A denotethe p+1 by q+ 1 matrix
A= “ ai,jl ()
where 0<i<p and 0<j<q. The matrix A is said to be dually feasible in case the

q columns
o = (B 5 By 5oeees By

where j =1, 2, ..., q, are lexicographically positive as defined in Ref. 7. In
particular, A is dually feasible if

ao'j >0, i=1,2,...,q)

If the matrix A is dually feasible, then our standard linear minimum program is also
said to be dually feasible.

Now, let us assume that our standard linear minimum program is dually feasible. Then,
the dual simplex method of C, E. Lemke (Ref. 14) as formulated in Ref. 7 can be applied
to obtain an optimal solution of the program or to prove the nonexistence of such.

LOCKHEED MISSILES & SPACE COMPANY
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If our standard linear minimum program has an optimal solutien, then, afier u finite
number of pivoting operations as described in Ref. 7, the dual-simplex method reduces
our given linear minimum program to the problem of finding the minimum value of the

variable y subject to the fuilowing p + q ¢+ 1 linear equations

q
Y = bo0* ZbO.juj ®
i=1
q
N bot S by ©®
i=1

where i=1, 2, ..., p+q, and the condition that

x, 20, 1 =12, ...,p+q (10

i

Here, the symbols ;s (p < 1< q), are used to denate the given nonbasic variables

tl’ evey t_ with
q

t, = X +9 (j=112r---vq)

and the new nonbasic variables Ugy ooes uq also appear on the left members of (9) as

q of the p + q variables Xy oo Xpugr Furthermore, the p+q+1 by gq+1

matrix
B = by,
(0$1<p+q, 05jSq), remains dually feasible and satisfies the condition

b,
i,0

LAV

0, (1<i<p+q) (11)

Because of the condition (11), the trial solution

y =by, (12)
X, =bi’o, i=12,...,p+9 (13)
is an optimal solution of our standard linear minimum program. 8
: ~ b
o
2-3 \-\"\ h
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Let A and Bo denote the (p+q+ 1) vectors

., a y 0, ..., 0)

a = (a P, o

a .o
0,0’ "1,0'

By = (bo,o’ b1,o’ bp.c’ bp+1.o' e bp+¢1-o)

Then, by (33) of Ref. 7, [30 is greater than °, in the lexicographical order unless
the given matrix A satisfies the condition

a 20 (1gigp) (14)

In case (14) is satisfied, then we may take B,_, = 0.

v
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Section 3
INTEGRAL LINEAR PROGRAMMING

In many practical linear programs, the optimal solutions are required to be integers.
For example, in the classical transportation problem, if the commodity to be shipped
is some indivisible good such as a number of automobiles, then the constraints and
function to be minimized are just as usual but only integral values of the variables are
admissible.

In 1958, R. E. Gomery (Refs. 12 and 13) introduced a general method for integral
solutions to linear programs. A simple exposition of Gomery's algorithm with some
slight improvement in the finiteness proof is given in this section. A numerical

illustrative example is worked out in the following section.
For this purpose, let us assume that the coefficicnts and constant terms

., (0<igp, 05j<q)

.3

in (1) and (2) are integers. Then, the standard integral linear minimum program is

the problem of finding nonnegative integers tl, veesy tq which minimize the linear
function (1) subject to the system (2) of linear inequalities.

Introducing new variables y, Xpr oees xp as in the preceding section, we obtain an
equivalent problem of finding integers tl' .
subject to the p+1 linear equations (3) and (4) and the condition (5) and (6). Since
the numbers a, ,, (0SiSp, 0%j<q), are »ssumed to be integers, and since the

i,]
variables t1 peesy t q are required to be integers, it follows that the variables

, tq which minimize the variable y

Ys Xgs oo xp must also have integral values given by the equations (3) and (4).
Hence, our standard integral linear program reduces to the problem stated as follows:

LOCKHEED MISSILES & SPACE COMPANY
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Find nonncgative integers vy, Xqs oo tl' cee tq which minimize y and

’ x ]
p
satisfy the p+1 linear equations (3) and (4) in section 2.

Now, let us consider our problem as a usual standard linear program and assume
that it is dually feasible as defined in section 2. Hence, we can apply the dual-simplex
method to our program, The result is that either the equations (3) and (4) have no
nonnegative solution whatsoever or our program has an optimal solution that is not

necessarily integral.

If the equations (3) and (4) have no nonnegative solution, then our given standard
integral linear minimum program certainly has no optimal solution in integers. There-
fore, our problem is solved negatively in this case.

On the other hand, if our program has an optimal solution that is not necessarily
integral, then the dual-simplex method reduces the given program to the problem of
finding nonnegative integers

Yo Xpr eeon ¥p g

which minimize y and satisfy the equations (8) and (9) as described in section 2,

If all of the p + q + 1 real numbers in the leading column

Bo = (bo,o' b1,o' te0 bp+q,o)

of the matrix B of the equations (8) and (9) are integers, then the trial solution (12)
and (13) is an optimal integral solution of our given program. Therefore, our problem
is solved affirmatively in this case,

In the remainder of this section, we shall consider the case in which not all of the
p + 9 + 1 numbers in the leading column g o of the matrix B are integers. Then,

LOCKHEED MISSILES & SPACE COMPANY
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the trial solution (12) and (13) is an optimal solution of our given program, but
unfortunately it is not integral.

Choose the first entry bl o in Bo from top down which fails to be an integer; in
other words, let io denote the smallest nonnegative integer such that b o is not

igs
an integer. Consider the equation

q
5 - bio,o . z bio'j u, (15)
j=1

where x; stands for y in case io=0.
o

Let h0 denote the smallest integer not less than bi o and, for each j = 1,2,

cesy q, let hj denote the largest integer not greater than bi § Let
0’
sh°-bi o (ifj = 0)
o
s -
- h ’ if = 11 2! 1]
ooy (f § a
Then we have
\ho-so, (ifj = 0)
b, j =
s’ 'hj+sj, Gf j=1,2,...,9q)
with ogsj < 1 foreach j = 0,1, 2,...,q.
Substituting these values of bi j into (15), we obtain
OI
q q
xio—ho- Zhjuj = -8 + Zsjuj (16)
i=1 i=1

LOCKHEED MISSILES & SPACE COMPANY
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For any integral solution of our program, Ugp oo uq and X; are integers. On
the other hand, ho' hl, .esy h q are integers by definition. Hgnce, the left member
q
Mrqe1 =%, "ho" Zhjuj (17)
j=1

of the equation (16) must be an integer. Furthermore, since

q
8, < 1, jzl sjujgo

the right member of (16) must be greater than -1. Thus, the integer xp rq+1 is
nonnegative and we obtain an equation

q
Xp+q+l = B0 T jzl %Y (18)

Now, let us adjoin this additional equation (18) to the system (9) and let

S-so, (ij = 0)

p+a+1, ) ?SJ’

b
(ifj =1,2, ..., 9

Thus, we obtain the following system of p +q + 1 linear equations

X = by o+ 2 by 4y (19)

where

1i=12,...,p+q+ 1.

3-4
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By the construction of (18), we have proved that, for any nonncgative integral solution
(xl, cen xp +q) of the system (9), there exists a nonnegative integer xp g+ 1 such
that (xl, IR is a nonnegative integral solution of (19). Conversely,
if (xl, cens xp“l' X

(xl, ey xp+q) is clearly a nonnegative integral solution of the system (9).

“prq’ Yprqr?
D iq+ 1) is any nonnegative integral solution of (19), then

Therefore, our standard integral linear program reduces to the problem of finding
nonnegative integers

y, xl’ veey xp+q) xp4q41

which minimize y and satisfy the p + q + 2 linear equations (8) and (19).

Since the system (8) and (9} is dually feasible and since si 20 for each j = 1, 2,
.++y g, it follows that the system (8) and (19) is also duafly feasible. On the other
hand, since bp +q+1,0 = -8, is negative, the trial solution of (8) and (19) is not
nonnegative, Thus, we can apply the dual-simplex method to this new system (8) and

(19). In fact, the first new nonbasic variable to be brought in is the variable

Xp+q+1.

The result of the dual-simplex method will cither prove that (19) has no nonnegative

solution, or give an optimal solution of (8) and (19) that may fail to be integral,
If the system (19) has no nonnegative solution, then it certainly has no nonnegative
integral solution. It follows that the system (9) also has no nonnegative integer

solution. This solves our standard inlegral linear program negatively in this casc.

On the other hand, if (8) and (19) have an optimal solution that is not nccessarily

integral, then, after a finite number of pivoting operations, the dual-simplex method

3-5
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reduces (8) and (19) to the system of p + g + 2 linear equations

q

Y= C%o" Z 0,1 20)
i=1
q

X = ci,o + z ci,jvj (21)
j=1

with i=1, 2, ..., p+q+ 1 and satisfying the condition

o2 0 (1S1SP+q+1) (22)
Here, the new nonbasic variables \SUREEE vq also appear on the left members of
(21) as q of the p+q + 1 variables  SURERY xp+q+1.

Let Bo and ¥ ° denote the (p+q+1) vectors

B =(b ,b .o

o 0,0’ 1,0’ "bp+Q.0)

Y )

cerey

o~ (co,o’ cl,o’ cp+q,o

Then it follows from the dual feasibility and the dual-simplex method that Yo 2 Bo
in the lexicographical order.

Because of (22), the trial solution

Y = .0 (23)
X =¢, (24)
3-6
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with i=1,2, ..., ptq1 1, is an optimal solution of (8) and (19). Therefore, it
follows that

Y ¥ %,o0 (25)
X = ¢ o (i=1,2,...,p4q) (26)
is a feasible solution (8) and (Y).
If Co,o’ cl,o’ cees cp +q,0 are integers, then cerq+ 1,0 is also an integer according

to the construction of the last equation in the system (19). In this case, the trial
solution (23) and (24) is an optimal integral solution of (8) and (19); hence (25) and (26)
is an optimal integral solution of (8) and (9). Thus, our standard integral linear

program is solved affirmatively.

It remains to study the case where not all of the numbers ¢ ,c, , ..., C
0,0" 1,0 p+q,0
are integers.

Choose the first entry LN in Yo from top down which fails to be an integer; that
’

is, let i denote the smallest nonnegative integer such that ¢ is not an integer.
o . o' ©
Consider the equation

q

X. =, o -+ Z Ci .V,
10 10; 1 O’J )

27

where X; stands for y in case io: 0.
o

Now, we can iterate our operation on (27) and the system (20) and (21) exactly as we
did on (15) and the system (8) and (9).

In the next section, we prove that the process stops after a finite number of iterations
provided that either of two mild conditions holds. The final result is that either the
given program has no integral feasible solution or this process gives an optimal
integral solution in a finite number of iterations,

3-7
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Section 4
FINITENESS PROOF

Throughout the present section, we shall assume that at least one of the following
two conditions (A) and (B) is satisfied:

(A) The nonnegative solutions of the system (2) of p inequalities form

a bounded set S of the g-dimensional Euclidean space Rq.

(B) The system (2) has a nonnegative solution in integers, and the
coefficients, a

0,1' ***? ao'q in (1) are all positive, that is,

a .>0, 0=11...,9

Under this additional assumption, we can prove that the process which is described

in the preceding section must stop after a finite number of iterations.

For this purpose, let us assume the contrary and deduce the following contradiction,
(Then the iterative process in the preceding section would apply infinitely many times.)
Let k 20 be any nonnegative integer. After the kth iteration of the process, our
given standard integral linear program reduces to the problem of finding nonnegative
integers

Yo Xqr ey xp+q+k
which minimize y and satisfy the system
k) q k) &
= )
y = d « z afl) wf (28)
i=1
k) S k) &
= ) )
x = di 4 z af) wl (29)
i=1
4-1
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with i=1, 2, ..., p+q+k and satisfying the condition

a 20, st ra+w (30)

Hcre, the nonbasic variables w(lk), ey w((lk) also appear on the left members of
(29) as q of the p + q + k variables Xgs eees xp+q+k‘ Note that (28) and (29)

reduce to (8) and (9) when k = 0 and to (20) and (21) when k =1,

Let :Sf)k) denote the (p + q + 1) vector

k) _ (&) LK) k)
5, = (do’o, A0 +ees dp+q'o)

Then it follows from the dual feasibility and the dual-simplex method that

oD 2 500 @1)
in the lexicographical order for every k 2 1.
In particular, (31) implies
&1 < 4® (32)
0,0. 0,0
for every k 21. In other words, the infinite sequence !
\ a©, I dg?o' .. (33) [
is monotone nondecreasing. '
Next, we can prove that, under our additional assumption made at the beginning of this
section, the infinite sequence (33) of real numbers is bounded above, ‘
l
4-2 {
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In fact, if the condition (A) is satisfied, then the continuous function (1) is bounded
for all feasible solutions of (2), Since df)k)o is the value of (1) for the feasible
solution

- . - &)
tj p+j dp+J.o

where § = 1, 2, ..., q, the sequence (33) is bounded.

On the other hand, if the condition (B) is satisfied, then the system (2) has a non-
negative integral solution

and the linear function (1) has the number

q
no= 0,0 * z aOJri
j=1

as its value for this solution of (2), Since the coefficients a are assumed to be

i,]
integral, it follows that

q

YIS0t D %
j=1

q
xl = & = ai’0 + jzl ai,jtj

where { = 1, 2, ..., p is an integral feasible solution of (3) and (4). Let
§p+j = Tj G6=1,2,...,9

then y =17, x;= Ei (i=1,2, ..., p+q) is an integral feasible solution of (8) and (9).

4-3
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By the construction of the iterative process in the preceding section, there exists a

nonnegative integer Ep for each k 21 such that

+q+k
y =1, xi=€i =112 ..., ptq+k)
is a feasible solution of (28) and (29). Since
= q® = 4k -
y_do,o’ xi"di,o =112 ..., p+q+k)

is an optimal solution of (28) and (29), we have
k) <
do,o =7

Hence the sequence (33) is bounded above in this case,

Thus, we have proved that the sequence (33) is bounded above provided that at least
one of the two conditions (A) and (B) holds.

As a nondecreasing sequence which is bounded above, the sequence (33) converges to
its least upper bound e, in symbols

& _
iir.r; do’o = e, (34)

Let ho denote the smallest integer not less than ey then we have
< -
e h ho LR <1

By (34), there exists a nonnegative integer k0 such that

LOCKHEED MISSILES & SPACE COMPANY
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On the other hand, since €, is the least upper bound of the sequence (33), we have

s =h —d(k0)20
o 2

) 0,0
If 8, = 0. then we have

df)k,%) =% T ho
Hence e, = ho is an integer and

a -e =h, &>k (35)

Otherwise, if 8, > 0, then

ako =y g

0,0 o o

is not an integer. According to the rule of choosing an equation in the iterative

process, the equation (28) is to be chosen to construct the new equation

q
- ko)
xp+q+k0+1 = 8, * z 8 %j © (36)
j=1
where
= g%o _ =
Sj dO,j h], (j 1) 2o veey q)

with hj standing for the largest integer not greater than dgk‘j’) .

Adjoin the equation (36) to the system (28) and (29) with k = ko and apply the dual-
simplex method to the system (28), (29), and (36). By assumption, we will obtain an

+1)_

optimal solution given by the vector 63(0 Since -8, is the only negative

constant term in the system (28), (29), and (36), the first pivoting in the dual-simplex

4-5

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35 ‘

ko) (ko)
o ,....wq°

method is to replace one of the nonbasic variables wy by the new
variable Xp+q+ko+ 1" If, according to the rule of the dual-simplex method, the
variable w(jko is selected to be replaced by x then equations (28), (29),

o p+qt+ko+1’
and (36) will be transformed into the form:

q
y = fo,o + z fo,jzj (37)
i=1
q
x = f o4 z fY (38)
J=1
with {1 =1, 2,...,p+q+ ko+ 1, where the new nonbasic variables Zysees zq
are given by
\”’:‘k°" Gy # §)
zj = <
(xp+q+ko+1, ufj = jo)

According to the pivoting process of the dual-simplex method, we have

- ako) , 2o 4lko)
f0,0 = do’% +? do’?o (39)
o]

Because of the dual feasibility of the system (28) and (29), dgk‘j’) 2 0 and hence
rJo
8 <d§)k°) . Therefore, (39) implies that

ko) =
fo,o 2 do,% +8 = ho'

- ———y

-y

4-6
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On the other hand, since

i <d® ce <h, k>k)
0,0 = 0,0= 0= 0 o
it follows that
R -
fo,o —do,o— € _ho’ (k>ko)

Thus, we have proved that the limit e, is an integer and that there exists an integer
k o such that

a® =, k > k)

0,0 o

Now, let us consider those vectors Gg() with k > ko' Since

5% < s&+HD

kK _ ,k+1)
o = "o ’ doo_do,o

for every k > ko, we have

k) k+1)
d < d1 0

1,0 < (40)
for every k > ko. In other words, the infinite sequence
ko+1) (ko+2) (k)
dl,O ’dl,O ""’dl,O"" (41)

is monoton¢ nondecreasing.

We will prove that, under our additional assumption made at the beginning of this
section, the sequence (41) is bounded.

4-7
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If the condition (A) is satisfied, then the continuous function
q
17 %,0"7 z ;1Y (42)
j-1

is bounded for all feasible solutions of (2). Since d(lk)0 is the value of (42) for the

feasible solution

_ _ 4K
Y = %4y T Gpigo

where j = 1, 2,..., q, the sequence (41) is bounded.
On the other hand, if the condition (B) is satisfied, then we have
> 0, g=12,...,9
For each k> ko‘ we have
k : k
- ) _ Z )
€ ~ do,o 3,0 " 8’o,jdp+;|,o
i=1

This implies that

&)
dh+j0 S (- ao.o)/aO.J

4-8
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forevery j =1, 2,..., q and therefore

q
0 < d(lk‘)0 < lal'O! + z l“],jl(eo'ao.o)/ao,j
j=1

for every k > ko' Hence the sequence (41) is bounded.

Thus, we have proved that the sequence (41) is bounded when at least one of the two
conditions (A) and (B) holds.

As a nondecreasing bounded sequence, (41) converges to its least upper bound e
in symbols

Lim d(k) = e

(43)
k=00 1,0

1

Let h;) denote the smallest integer not less than e,, then we have

1l

L Shl, h-e <1

By (43), there exists a nonnegative integer k1 > ko such that

- _ 4tk1)
s, = hy - diy < 1

On the other hand, since ey is the least upper bound of the sequence (41), we have

s = h - a*D 5 ¢
(o] o 1,0 =

If s, = 0, then we have

1
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Hence e = h(') is an integer and
&k _ =
djo = € = hy &k >k

Otherwise, if s(') > 0, then

is not an integer. Since

akd = -

6-90-63-35

(44)

is an integer, it follows from the rule of choosing an equation in the iterative

process that the equation

q
- ak1 ky (k1
X1 = dl,%) * z dl.} ¥
=1

is to be chosen to construct the new equation

q

- - k)
xp+q+k1+1— s(’)+ sj'wjl
j=1

where

8! = d(k})_ h', G=1,2,...,9

with hj' standing for the largest integer not greater than d(lk’}) .

4-10
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Next we adjoin the equation (45) to the system (28) and (29) with k = k 1 and apply
the dual-simplex method to the system (28), (29), and (45). By assumption, we can

obtain an optimal solution given by the vector 62(14 Y . Since -s(') is the only
negative constant term in the system (28), (29), and (45), the first pivoting in the

ky
1

by the new varijable Xp+q+kq+1- If, according to the rule of the dual-simplex

(kq)

dual-simplex method ie to replace onc of the nonbasic variables w vy W

(k)
method, the variable wjol is selected to be replaced by xp+q +ky+1’ then the
equations (28), (29), and (45) will be transformed into the form (37) and (38) with
i=1,2,...,p+q+ k1 + 1, where the new nonbasic variables Zyseees zq are
given by
k)
\wj , (fj # i
z]. =
'xp+q+k1+1, ary =iy
By the pivoting process, we have
S'
£ = akD o 4kD (46)
0,0 0,0 8! o,j
1o o
On the other hand, we have
akD ¢ ¢ < gkt D gk (a7
0,0 = 0,0 = 0,0 0,0
Since s; # 0, (46) and (47) imply
aky - o (48)
0,)
o
4-11
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Because of the dual feasibility, (48) implies

ky)

SRR (49)
This fact (49) implies

' (kl)

sjo < dl.jo (50)

1,0 1,0 sj' 1,]

v

a
=
=

“+

/]

"

=

because of (50). On the other hand, since

k)
f10 £ 90 £ €18 b k> Ky
it follows that
- qk _
fi,0 =930 = ¢ =By k> Kk

Thus, we have proved that the limit e
integer k1 > ko such that

1 of (43) is an integer and that there exists an

a9 =epn &>k

4-12
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We can now repeat the same argument given above for i = 2,3,..., p+q or
apply the mathematical induction. Hence, forevery i = 0, 1,..., p+q, the
sequence
oy (D) (k)
di,o' di,o seees di,o peos

converges to a limit

Lim d(k) = e
k= o0 i,o !

where € is an integer; furthermore, there exists an integer ki such that

k) _
dio = ¢ &>k

Finally, let k be a finite integer such that

k>k,, (i=0,1,...,p+q

Then it follows that

e
o

0,0

<
1

dgkz)z ei, (i=1, 2...-rp+q)

is an integral optimal solution and the process terminates after k iterations. This

completes the finiteness proof.

4-13

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

Section 5
AN ILLUSTRATIVE EXAMPLE

In this section, we shall study the standard integral minimum program of finding

nonnegative integers

t., t,, t t

1 by ty by b b by g tgy by

which minimize a given linear function
y =t +t2+t3+t +t. +t,+t, +t +t, + t

1 4 5 6 7 8 9 10

subject to a system of 20 linear inequalities:

[ad
]
-
]
o
wv
<

fas -
] ]
o L el
(=]
1 ]
- -
5]
1 1
- -
[e -]
v v #
o (=]

]
[
'
L
1
-
i
-
v
o

10 1 2 3 5 =

-
+
o

J
[ag
J

v

o

[y
v
(-4

t+ty+tg-t; =120

tg + by +tg =t =120

t1+t2+t3+t6—t10 120

- -120

ty+ byt 4t Yy 2
5-1
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ty -t 20
tg -ty 20
ty -ty 20
to-ty 20
tg -t 20
ty - tg 20
tg -ty 20
ty - tg 20

Next, we introduce slack variables X 1<ig 20, for the left members of these
inequalities. Thus, the given problem is reduced to that of finding nonnegative integers

Y X and tj'

which minimize

=t +t2+t

1 3
“to-t Y
=to "t "t
=to "t Y
"ho "t Yy
=to "t "t
=t4+t9-t10
=tg+t -t
=t1+t2+t9
=t1+t4+t6
=t3+t4+t5
=ttty
=t1+t2+t4
LOCKHEED

y subject to the following twenty-one equations:

+t, +t. +t,+t, +t, +t, +¢

gt ttg Tyt gt byt

_t8

-t5

-t -t

-1

-1

=t -1

"t -1

"t -1

+t6-t10-1

+t5—t10-1
5-2
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B-h Y
X1 = B b
X5 =t "t
16 =% Y4
X7 =% "
X18 =4 "t
X9 =%~ 4
Xp0 = tg " tg

Since all coefficients of the linear function y are positive, the problem is dually
feasible; hence, we can apply the dual-simplex method and write

=t

i 1c) 10

%20+ j

Then we can write the initial tableau To'

For definiteness, we choose the first variable with a negative constant term as the

new nonbasic variable in each pivoting operation.
After twelve pivoting operations, we obtain a nonintegral optimal solution.

The thirteen tableaux of these operations are given as follows. The pivot element
in each tableau is circled.
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Tableau T0

*10
*11
*12
*13
*14
X15
*16
*17
*18
*19
20
%21

[ I ]
X—Xx

X925

*26
Xon

X28
*29

| %30

LOCKHEED MISSILES & SPACE COMPANY
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Tableau T1

*10
11
i X212
*13
X14
X15
*16
X17
*18
*19
X20
*21
X22
X23

24
X925
*26
Xo1

29
X390

®

5-5

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

Tableau T2

o — vy

*10
*11
X12
13
*14
X15
16
17
*18
*19
%20
a1
X6
*26
Xo1

= 2
LI B k]

| 30

[ —

5-6
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Tableau T3
c t1 t2 t3 X4 t5 t6 t7 t8 Xe X4
y 3 1 3 3 2 | 3 1 1 1 3 | 2
Xy )
) 1 1 1 1 -1 1 1
X3 1 1 1 -1 1 1
X4 1
X5 1 -1 1 1|1
Xg 1
Xy -2 SN EETEERE 1 | @ -1 | -1
> -1 1 1] 1] -1
%9 -1 1 | -1 -1 1 -1
*10 -1 -1 1 1
X1 -2 1 -1 ] -1 1 -1 | -1
*12 -1 1 1
*13 -1 1
*14 -1 1
X15 1 1 1
*16. -1 -1 -1 1 -1
X17 -1 1
*18 -1 | 1
*19 -1 1
%20 1 1 1 -1 1 1
*21 1
%22 1
X3 1
*24 1 1 1 1
%5 1
26 1
X217 1
X8 1
%29 1 1 1 1| 1
%30 1 1 1 1] 1 1| 1
5-7
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Tableau T 4

*10
1
X12
*13
*14
*15
*16
*17
*18
*19
%20
X21

»

™)
o)
ol

4
X925

oy
L]

X
26

Xon
X28

X29

5-8
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Tableau T5

%10

*12
*13
*14
*15

*16
X17
%18
*19
20
%21

%22 -
*23
%24
%25
26
Xon
*98
%29

*30

5-9
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Tableau T6

-2

-

11

*10
*11
X12
*13
*14
*15
*16
*17
*18
*19

%20
X21

L]

A

24
25
X286
Xa7

]

»

5-10
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Tableau T7

15

Ny

14

*10
X158
*16
*17
*18
%19
%20
*21

s

L]

26
Xon

|28

5-11
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Tableau T 8

bovme  emet me Sy e b

15

*11
*12
*13
*14
*15
*16
*17
*18
*19

i f e -{] - (] - F N
(] L] 4 i | v
-4 -y
t
-y
-t ] =t
|
-t i ] w4 vy § i
(]
-
-4 -4 -4 4 ]
w
i ] =t | N N i N
] ] r=i] vd [\ ] - NN
i | v~ (] [ i v
NN r4] ™M Ll -] N ™M
012%4567890
o N NN NI N[N N
xxxxx_x_xxx—mx
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Tableau T9

16

12

-3

*10

17

*13

13

[2p]

C

31

3

j

*10
*11
*12
*13
%14

*15
*16
X17
*18
*19
%20

%21
*92

| 23

X904
*95

*o8

X390
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Tableau Tlo

[ * L] [ SUR | S
x4% L) — 2441122224 <fe
xss -4 L] lﬂl_u N il N NN
o = - | - -

-~ ] 1

[ ol Ranl ) vd i

» 1

-4

- - 12@ i -

» i 1

©

x14. -4 ..ﬂ L] -] ot ] e

Xlo [3-} ] - 1431111323 ol v
N

m% -+ - - | 14511913334 wl~

H

mz ()] e = o] N N o =] =] =] Nl n

»x 1 )

xsn () i 4 1441112223 1l

o Im t- - -l N 117922LL5567 ®l
n | -

o =| e o] ¥ =] o] o] o] ~] & <« ] ©| =] o] »
v vei] v=f] 4] = d ] =i =] O O] NN N N} O] AN N N

> 3 o se [ |5 s P I x| I fud e I I I fod I fad e ¢ X
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Tableau T11

24

20

*10
29

3

X

12

Xg
21

51

-13

13

)

xj

xg

*10
*11
*12
*13
%14
*15
*16
*17

*18
*19
%20

X21
Y
X293

*24
*25
*26
o1

X929
*30
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Tableau T12

4r el - - - 1112ﬂ2233346
)
x59 L cﬂo - i v f ] ] =] NN
© ho w e 7 7 0w w|lwe]e
. . K e ; i : I B
. wlw 0 7o) v w| ] v
Nl It ol . . ; q Bt Baid
®
v Rt v | ™ | -]
» ¢ [} 1
© o wl v v w n ] vl v
Rall I 7 B K Y . A Al -
oy 0o 0 0 o 0} w| )
% o N i - : .11113&2.2ﬁ35
o
k2
=3 [ | v w W 0 w| vl v
% feq N - I | - : | =] = oo 2| o] 3l 3] A} o} =
™
? .
] () w| w v o 0 w} w] v
» m T * - : : 1L11LLL2*3
3
o [ wl o 1) 1) n JSM
» % i B | - : L1112L222. <l v
0 el w 0 0 0 w o] o
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Since the constant column in T 9 is nonnegative, we obtain an optimal solution

1

The minimum of the linear function

21

X =

22

X =

23

X =

24

X =

25

X =

26

X =

27

X =

28

X =

29

X =

30

6.5
6.5

6.5

12

for all feasible solutions is 57.5. This optimal solution is not integral; in fact, it is

obvious that no integral feasible solution can give y the nonintegral value 57.5.

To find an integral optimal solution for our problem, let us apply the process

described in section 3,

5-17
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Since the leading element 57.5 in the constant column is nonintegral, we choose the
equation

y = 57.5 + 23.5x8 + 13.5 x 3 * 32.6 x,, + 22,56 x

1 10 1

+4.5x16 ! x19 ! 1.5x7 i .5x18+9)\5+27x4

in the construction of the new equation. Thus, we obtain the new equation

x31 = - .5 + .5x8+.5x13+.5x10

+ .5x1+ .5x16+.5x7+ 5 x

18

Adjoin a new row corresponding to this additional constraint to the last tableau T12.
Hence we obtain the following expanded tableau T13 .

In T13 , since -.5 is the only negative entry in the constant column, we have to use
Xg, 88 the new nonbasic variable. The pivot element i8 marked by a circle. After

the pivoting operation, we obtain the tableau T1 4

5-18
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13
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13

X X
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Tableau T 14

5-20

L [ [ ——
ol I - - - 11112—233u46
N
wole - ~— - - | o~ - ~] 4 N
N 1
vt ot - - - il o B ] - ~4 -
] 1 1 1 ] ' ]
»®
71 -4 i 11... i
o
N K - - - -4
xl ' 1
Sl - - - - il L ]
" [
) - - ) - ol B N =] o 4 =] nf o] N o ]
- | N
»”
. K - e e Bl K -} - 14. N | = oY o] ] ] o} o ] o~
- ™
»®
w1l - i ] - - | = i | N ] 4 N
o ) |
®
o |2 -t - Ll - al B ) ] o A ] «] o ] ] ]
o J N
o - - o~ | o~ al ] | o ] vl ©] =] = Bl N
QO v i
O] i N M1 W 1] 0] b=} O] B] S]] =~ N Hl v} ©Of b~ [-:] v
Nl o 91111111111222 N 3] N O
> » XXXXXXXXXXXXXXXXXX—Xxx—xx

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

Now, in the tableau T all entries are nonnegative integers. Hence, we obtain an
optimal integral solution

by =% 7 2
t2=x22=2
ty = Xp3 =3
t4=x24=5
t5=x25=5
tg = X6 = 6
t7=x27=7
tg = X = 7
tg = X9 = 9
t10=x30=12

The minimum of the linear function
10
y = Z t
=1

for all integral feasible solutions is 58.

5-21
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Section 6
SWITCHING FUNCTIONS

Let Q denote the set that consists of the two integers 0 and 1. For any given
integer n > 1, consider the Cartesian power

Q = Qx..XQ

which is the Cartesian product of n copies of Q. Thus, the elements of Qn are the
P ordered n-tuples

(xl, x2 seeesy xn)

where the kth coordinate X isin Q forevery k = 1, 2,..., n. Hereafter, Qn

will be called the n-cube and its 2" elements will be called its points.

By a switching function of n varisbles, we mean any subset F of the n-cube Qn.

Since Qrl has 2" points, there are 22" gdifferent switching functions of n variables.

A switching function F of n variables is said to be linearly separable provided that

there exist n + 1 real numbers LT » W Wi such that, for every point

PR
X = (xlt ,Xn)‘Qn
we have x ¢F if and only if
Wyxg b oo PV % S Wi
The set W = (w1 veres Woo W 1) is called a separating system of F ; the real
numbers Wy seees W, are called the weights, and the real number Wil is called

6-1
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the threshold. By taking the threshold Wi,1 28 small as possible while the weights

Wiseses W, are held fixed, we may assume that, in case F is not empty, there
exists a point x = (x1 seees xn) in F such that
WyXptooo FW XS WL

Consider the complement

F'=Q - F
of F. For everypoint y = (yl,..., yn) in F', we have
w1y1+...+wnyn>wn+1

Let M denote the minimal value of

lel +...+ wnyn - Wn+1

for all points y = (y1 beves yn) in F' in case F' is not empty. This positive real
number M is called the margin of the separating system W (Ref. 15, p. 6). A
separating system W = (w1 peees Woy W 1) of F is said to be normal provided

that M = 1. Every separating system

W - (wl,_,_, wn, wn+1)

of F can be normalized by dividing each Wi d=1,...,n+1), bythe margin

M of W. Precisely, the set

= 1
Wh= (W) ooy W W o)

with wi =Wy /M foreach { = 1,..., n+1 is a normal separating system of F.
Hence, every linearly separable switching function F has a normal separating
system,

6-2
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Let W = (w1 reees Why W 1) be any normal separating system of a given linearly

separable switching function F of n variables. Then, for every point

X = (x5, ,xn)€Q"
we have
LPRI T WX S WLy (if x €¢F)
‘e T
WXyt WX 2 wn+1+1, (i xeF"

By a canonical switching function of n variable, we mean a linearly separable

switching function F of n variables which admits a separating system
W = (w1 yeras wn, L/ 1) satisfying

A

£
A
A

w, < w ... W
= Ti+1= =

1 n

in words, the weights w A in W are nonnegative and nondecreasing.

1"

It is well known (Refs. 16 and 17) that every linearly separable switching function F
of n variables can be reduced to a unique canonical switching function by permuting

and complementing a number of the variables.

6-3
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Section 7
REGULAR SWITCHING FUNCTIONS

By a weight function of n variables, we mean a homogeneous linear function
w : R —=R

on the n-dimensional Euclidean space R" witk real values. Precisely, there are
n real numbers Wy oreees Wy such that, for an arbitrary point x = (x1 yeees xn)
of R" , we have

w(x) = wlx +... +W_X

1 n’'n

The real numbers Wiseens w, are called the coefficients of the weight function w.

A weight function w R"——R with coefficients w

canonical provided

yeeey W_ is said to be
1 n

=
A
£
nA
£
A
iIA

w, <
l:

A
g

w, <...
i+1 =

By means of the canonical weight functions of n variables, we can define a partial
order in the n-cube Qn as follows: Let x = (x1 yeees xn) and y = (y1 reees yn)
be any two points of Qn ; then we define

»
A
[

if and only if

w(x) £ w(y)

7-1
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for every canonical weight function w of n variables. This partial order in Qn
is called the canonical partial order (Ref. 17).

The following criterion for < was established in Ref. 17. For arbitrary points

X = (xl,.... xn) and y = (yl""’ yn) of Q", we have x < y if and only #f

n n
Z X Eyj

j=t ~ j=i

A

forevery i = 1,2,...,n,

With respect to the canonical partial order in the n-cube Qn » we define the maximal
E)_i_nt_s and the minimal points of an arbitrarily given switching function F of n
variables as follows. A point x of F is said to be maximal provided that, for an
arbitrary point y of F, x £y implies x = y. Similarly, apoint x of F is
said to be minimal provided that, for an arbitrary point y of F, y £ x implies

y = X.

Using the canonical partial order < in the n-cube Qn » we can define the regular
switching functions. A switching function F of n variables is said to be regular if
and only if it satisfies the following regularity condition:

If xeF and y < x, then yeF.
Obviously, every canonical switching of n variables is regular. In Ref. 18, it was
proved that every regular switching function of n £ 5 variables i3 canonical; in

Ref. 6, an example is given which shows that not every regular switching function of
6 variables is canonical.
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Section 8
SYNTHESIS AND MINIMIZATION

Let F be an arbitrary switching function of n variables, Thec synthesis problem

for the linear separability of F is to determine whether or not F is linearly

separable and to find a separating system (w1 eens W, W 1) for F incase F is

linearly separable.

Among various synthesis methods for linear separability introduced in the literature,
the one given by D. G. Willis (Ref. 1) turns out to be the most convenient because it
involves as few linear inequalities as possible. In Ref. 1, the synthesis problem for
the linear separability of arbitrary switching functions of n variables was reduced
to that of the regular switching functions of n variables. Thus, it remains to

determine whether or not a given regular switching function F is linearly separable

and to find a normal canonical separating system (w1 teees W

o’ wn+1) for F in

case F is linearly separable and hence canonical.

For the convenience of the reader, we shall briefly describe the Willis synthesis
method.

Let F be an arbitrary regular switching function of n variables, We assume that

F is nontrivial, i.e.,

n

F # 0O, F # Q

where O denotes the empty set. Let L denote the set of all maximal points of F;

and let M denote the set of all minimal points of the complement F' = Qn - F,
Let
al=(a11,...,ain), i-=1,2, ' P)
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be the points of L and

by = (B +evns by, G=1,2,...,9

be the points of M. Consider the following system of p + q + n linear inequalities:

n 1
Y oW <V, = L2,..,p)
k=1
‘ (51)
n
ijkwk 2%t 0 =12,...,9
k=1 )
0 gwyswys o S Wy

Then, the Willis synthesis theorem states that the given regular switching function F
is linearly separable if and only if the system (51) of linear inequalities has a solution
(and hence an integral solution).

In our previous reports (Refs. 2-5), various methods were applied to solve the
system (51).

The next problem is naturally the minimization problem, which is to find the most
economijcal solution of the system (51) in case the given regular switching function F
is linearly separable. In other words, the minimization problem is to find a solution

Wyseeey Wy W)
of the system (61) which makes some cost function ¢ (w1 peees Wi W +1) minimal.
8-2
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For the minimization problem, let us first pick up the cost function ¢ . Assume that
the cost of realizing the W, is proportional to the magnitude of w, for each
i=12,..., n+1. Under this assumption, the cost function ¢ will be a homo-
geneous linear function.

n+1

] (wl,...,wn. wn+1) = z 'yiwi, (52)
i=1

where the coefficients Yyooeees are nonnegative real numbers. In the

n+1
literature (see Ref. 8), two different cost functions have been studied; one of these

is defined by Y = 1 forall i =1, 2,..., n, n+ 1 and the other is given by Y= 1
for i =1, 2,..., n and 'Yn+1 = 0.

Having fixed the cost function ¢ by (52), the minimization problem for a given
regular switching function F is that of finding a normal canonical separating system
that minimizes ¢ ; in other words, the minimization problem is the standard linear

program of finding nonnegative real numbers.

y W

Wis Woseeey W ntl

n

which minimizes the cost function (52) and satisfy the system (51), or equivalentiy the

following system of m = p +q + n - 1 linear inequalities:

n
- i = \
Zaikwk+wn+1=>0’ (i=12,..., p)
k=1
n
S 14 Y byw w120, (=L2,...,9 | (53)
k=1
- > -
Wil wk=0, k=1, 2, ,n+ 1)
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In an earlier report (Ref, 19), it was proved under the assumption

Yy > 0

that this minimization problem for F has optimal solutions in case it is feasible.
In other words, if Y, > 0, then every linearly separable regular switching function
F of n variables has a minimal normal canonical separating system.

Various algorithms for computing these minimal normal canonical separating systems
were proposed in our recent reports (Refs. 6 and 7). In particular, if

7i>0, ad=12,...,n (54)
the minimization problem is dually feasible for every nonempty regular switching

function F and hence the dual-simplex method can be very efficiently applied without
the work of finding a feasible solution first (see Ref. 7).
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Section 9
INTEGRAL MINIMIZATION PROBLEM

Throughout the present section, let us assume that the cost function (52) satisfies the
condition (54) and that the given regular switching function F of n variables is
nontrivial, i.e.,

n

F#0O, F#Q

For most of the threshold devices realizing linearly separable switching functions, the

numbers

Wi Wo sunes Woo W

are required to be integers. Hence, we want to find nonnegative integers Wis
i=1, 2,..., n+ 1), which minimize the cost function (52) and satisfy the system
(53) of linear inequalities. In this integral minimization problem, the coefficients
‘Y]. 3200y Yn+ 1

function (52) for any integral feasible solution of the problem is also a nonnegative

are assumed to be nonnegative integers. Hence, the value of the cost
integer.

The optimal solutions of the minimization problem in the preceding section may be

not integral. For example, let us consider the regular switching function

F = 987643/651/51/2

of nine variables in the notation introduced in our earlier report (Ref. 20). This
regular switching function F consists of 58 points of the 9-cube Q9 , and its

complement F' consists of 29 - 58 = 454 points of Q9 .

9-1
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By the methods developed in Refs. 20 and 21, one can find the set L of all maximal
points of F and the set M of all minimal points of its complement F', Indeed,
L consists of the following five points of Q9

(0,0 1,0,0,0,0,0,1
(0, 0,0,0, 10,0, 1, 0)
(0, 1,100,001, 0
(0, 1,0,110,0,0, 0
, 1,101,000, 0
and M consists of the following seven points of Q9
(0,0,0,1,0,0,0,0, 1)
(0, 0,0,0,0,1, 1, 0, 0)
(1, 1, 0,0, 0,0, 0, 0, 1)
(,0,0,1,0,1, 0,0, 0
(0,0 1,110,000
(4, 1, 1, 0, 0, 1, 0, 0, 0)
(1,1, 0,1, 1,0, 0,0, 0

Assume the cost function to be the following linear function

y = W1+W2+W3+W4+W5+W6+W7+W8+W9+W10

Then, one can easily see that our minimization problem reduces to the illustrative
example in section 5 with t, = wj for each j = 1, 2,..., 10. Hence, after

J

twelve pivoting operations, the dual-simplex method gives an optimal solution

9-2
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w1 = 2
w2 = 2
w3 = 3
w4 =5
w. = 5
> > (55)
WG = 6.5
w,7 = 6.5
Wg = 6.5
w9 =9
w10 = 12 /
with the minimal total cost
y = 57.5

Hence, this regular switching function F is the one studied by D. G. Willis
(Ref. 8).

Since the minimal total cost is 57.5 , no integral feasible solution can be an optimal

solution. In fact, D. G. Willis proved that

2, 2, 3,5, 5, 6.5, 6.5, 6.5, 9, 12)

is the only minimal normal separating system for F,

Now, let us return to the general case described at the beginning of this section.

9-3
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Apply the dual-simplex method to our minimization problem. The result will be that
either F 1is not linearly separable or an optimal solution can be obtained from the
final simplex tableau.

If the optimal solution obtained by the dual-simplex method consists of integers only,
then we have obtained an integral normal canonical separating system which is
minimal for all normal canonical separating systems of F. Thus, the problem of
finding minimal integral weights and threshold is solved in this case. T

Otherwise, if the optimal solution is not integiral, then we can apply Gomery's method
as described in section 3. It remains for us to verify that the finiteness proof in
section 4 holds for this special case.

In case 'Vn +1 > 0, the condition (B) at the beginning of section 4 is satisfied since

F is linearly separable and
'yi>0, (i=1, 2,..., n+1),
Hence, the finiteness proof holds for this case.

On the other hand, let Yae1 = 0. Since F # Qn , it follows that the unit point

1, 1,..., 1) of Qn is in the complement F' and hence

n
wn+1 < 2 wi-l
i=1

for every feasible solution (w1 eees W 1) of (53). Hence, in the finiteness proof,
we can also prove that the sequence (41) is bounded. Therefore, the finiteness proof
holds also for this case.

LOCKHEED MISSILES & SPACE COMPANY




6-90-63-35

Thus, after a finite number of iterations of the process described in section 3, we

will get a minimal integral solution of our minimization problem,

Let us consider the regular switching function

F = 987643/651/51/2

of nine variables again. We have observed that the dual-simplex method gives us the
optimal solution (55) with cost y = 57.5 . Since this solation is not integral, we
apply Gomery's process to the resulting system. A= shown in section 5, we obtain
finally an optimal integral solution

w1=2
w,):2
w3=3
w4=5
w5=5
w6=6
w7=7
w8=7
w9=9
w10= 12
with total cost
y = 58

Thus we have obtained a minimal integral normal canonical separating system

(2’ 2' 31 5’ 5’ 6’ 79 7, 9, 12)
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of the given regular switching function F of nine variables; where

2 23,5,5,6,17,7,9)

are the weights and 12 is the threshold.
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